174 lines
5.4 KiB
JavaScript
174 lines
5.4 KiB
JavaScript
'use strict';
|
|
|
|
var width = 256;// each RC4 output is 0 <= x < 256
|
|
var chunks = 6;// at least six RC4 outputs for each double
|
|
var digits = 52;// there are 52 significant digits in a double
|
|
var pool = [];// pool: entropy pool starts empty
|
|
var GLOBAL = typeof global === 'undefined' ? window : global;
|
|
|
|
//
|
|
// The following constants are related to IEEE 754 limits.
|
|
//
|
|
var startdenom = Math.pow(width, chunks),
|
|
significance = Math.pow(2, digits),
|
|
overflow = significance * 2,
|
|
mask = width - 1;
|
|
|
|
|
|
var oldRandom = Math.random;
|
|
|
|
//
|
|
// seedrandom()
|
|
// This is the seedrandom function described above.
|
|
//
|
|
module.exports = function(seed, options) {
|
|
if (options && options.global === true) {
|
|
options.global = false;
|
|
Math.random = module.exports(seed, options);
|
|
options.global = true;
|
|
return Math.random;
|
|
}
|
|
var use_entropy = (options && options.entropy) || false;
|
|
var key = [];
|
|
|
|
// Flatten the seed string or build one from local entropy if needed.
|
|
var shortseed = mixkey(flatten(
|
|
use_entropy ? [seed, tostring(pool)] :
|
|
0 in arguments ? seed : autoseed(), 3), key);
|
|
|
|
// Use the seed to initialize an ARC4 generator.
|
|
var arc4 = new ARC4(key);
|
|
|
|
// Mix the randomness into accumulated entropy.
|
|
mixkey(tostring(arc4.S), pool);
|
|
|
|
// Override Math.random
|
|
|
|
// This function returns a random double in [0, 1) that contains
|
|
// randomness in every bit of the mantissa of the IEEE 754 value.
|
|
|
|
return function() { // Closure to return a random double:
|
|
var n = arc4.g(chunks), // Start with a numerator n < 2 ^ 48
|
|
d = startdenom, // and denominator d = 2 ^ 48.
|
|
x = 0; // and no 'extra last byte'.
|
|
while (n < significance) { // Fill up all significant digits by
|
|
n = (n + x) * width; // shifting numerator and
|
|
d *= width; // denominator and generating a
|
|
x = arc4.g(1); // new least-significant-byte.
|
|
}
|
|
while (n >= overflow) { // To avoid rounding up, before adding
|
|
n /= 2; // last byte, shift everything
|
|
d /= 2; // right using integer Math until
|
|
x >>>= 1; // we have exactly the desired bits.
|
|
}
|
|
return (n + x) / d; // Form the number within [0, 1).
|
|
};
|
|
};
|
|
|
|
module.exports.resetGlobal = function () {
|
|
Math.random = oldRandom;
|
|
};
|
|
|
|
//
|
|
// ARC4
|
|
//
|
|
// An ARC4 implementation. The constructor takes a key in the form of
|
|
// an array of at most (width) integers that should be 0 <= x < (width).
|
|
//
|
|
// The g(count) method returns a pseudorandom integer that concatenates
|
|
// the next (count) outputs from ARC4. Its return value is a number x
|
|
// that is in the range 0 <= x < (width ^ count).
|
|
//
|
|
/** @constructor */
|
|
function ARC4(key) {
|
|
var t, keylen = key.length,
|
|
me = this, i = 0, j = me.i = me.j = 0, s = me.S = [];
|
|
|
|
// The empty key [] is treated as [0].
|
|
if (!keylen) { key = [keylen++]; }
|
|
|
|
// Set up S using the standard key scheduling algorithm.
|
|
while (i < width) {
|
|
s[i] = i++;
|
|
}
|
|
for (i = 0; i < width; i++) {
|
|
s[i] = s[j = mask & (j + key[i % keylen] + (t = s[i]))];
|
|
s[j] = t;
|
|
}
|
|
|
|
// The "g" method returns the next (count) outputs as one number.
|
|
(me.g = function(count) {
|
|
// Using instance members instead of closure state nearly doubles speed.
|
|
var t, r = 0,
|
|
i = me.i, j = me.j, s = me.S;
|
|
while (count--) {
|
|
t = s[i = mask & (i + 1)];
|
|
r = r * width + s[mask & ((s[i] = s[j = mask & (j + t)]) + (s[j] = t))];
|
|
}
|
|
me.i = i; me.j = j;
|
|
return r;
|
|
// For robust unpredictability discard an initial batch of values.
|
|
// See http://www.rsa.com/rsalabs/node.asp?id=2009
|
|
})(width);
|
|
}
|
|
|
|
//
|
|
// flatten()
|
|
// Converts an object tree to nested arrays of strings.
|
|
//
|
|
function flatten(obj, depth) {
|
|
var result = [], typ = (typeof obj)[0], prop;
|
|
if (depth && typ == 'o') {
|
|
for (prop in obj) {
|
|
try { result.push(flatten(obj[prop], depth - 1)); } catch (e) {}
|
|
}
|
|
}
|
|
return (result.length ? result : typ == 's' ? obj : obj + '\0');
|
|
}
|
|
|
|
//
|
|
// mixkey()
|
|
// Mixes a string seed into a key that is an array of integers, and
|
|
// returns a shortened string seed that is equivalent to the result key.
|
|
//
|
|
function mixkey(seed, key) {
|
|
var stringseed = seed + '', smear, j = 0;
|
|
while (j < stringseed.length) {
|
|
key[mask & j] =
|
|
mask & ((smear ^= key[mask & j] * 19) + stringseed.charCodeAt(j++));
|
|
}
|
|
return tostring(key);
|
|
}
|
|
|
|
//
|
|
// autoseed()
|
|
// Returns an object for autoseeding, using window.crypto if available.
|
|
//
|
|
/** @param {Uint8Array=} seed */
|
|
function autoseed(seed) {
|
|
try {
|
|
GLOBAL.crypto.getRandomValues(seed = new Uint8Array(width));
|
|
return tostring(seed);
|
|
} catch (e) {
|
|
return [+new Date, GLOBAL, GLOBAL.navigator && GLOBAL.navigator.plugins,
|
|
GLOBAL.screen, tostring(pool)];
|
|
}
|
|
}
|
|
|
|
//
|
|
// tostring()
|
|
// Converts an array of charcodes to a string
|
|
//
|
|
function tostring(a) {
|
|
return String.fromCharCode.apply(0, a);
|
|
}
|
|
|
|
//
|
|
// When seedrandom.js is loaded, we immediately mix a few bits
|
|
// from the built-in RNG into the entropy pool. Because we do
|
|
// not want to intefere with determinstic PRNG state later,
|
|
// seedrandom will not call Math.random on its own again after
|
|
// initialization.
|
|
//
|
|
mixkey(Math.random(), pool);
|